
IMPLEMENTATION OF A PARALLEL-SEARCH TRIE-BASED SCHEME
FOR FAST IP LOOKUP

Roberto Rojas-Cessa∗, Laksmi Ramesh, Ziqian Dong, Brian D’Alessandro, and Nirwan Ansari
New Jersey Institute of Technology
U

ABSTRACT
The Internet Protocol (IP) address lookup is required to
be resolved fast to keep up with data rate increases. To
cope with the increasing number of entries, solutions for
IP lookup based on random access memory (RAM), which
store prefixes in a trie-based structure, are of interest. In
this paper, we propose a flexible and fast trie-based IP-
lookup algorithm where parallel searching is performed.
This algorithm performs lookup in a maximum of two
memory-access times whileusing a feasible amount of
memory.

KEY WORDS
Trie search, parallel search, prefix expansion, hashing,
RAM based.

1. Introduction

Classless inter-domain routing (CIDR) allows Internet
routers to store a large number of Internet addresses com-
pactly. While reducing the number of entries in the
forwarding table, CIDR increases the complexity of the
address-lookup procedure because the longest prefix match
is sought rather than the exact prefix match. An efficient
IP-lookup algorithm: 1) performs a small number of mem-
ory accesses, if not one, for a single lookup, and 2) uses a
feasible amount of memory to store the prefix information.
Because of long memory-access times and slow advances
in improving memory speed, we consider that reducing the
number of memory-access times is critical in keeping up
with the ever-increasing data link rates. Furthermore, it is
required to keep the required memory amount low for an
algorithm to be practical.

A known alternative is a trie-based scheme that uses
random access memory (RAM). In the basic trie-based
scheme, a binary tree represents all combinations existing
in the forwarding table. In this scheme, the worst-case time
takes up to 32 memory-access times to find the longest pre-
fix match for IPv4, as described in PATRICIA trees [1].
Other improved schemes are presented in [2], which uses
small forwarding tables at the expense of requiring up to
12 memory-access times, in [3], which uses 4-bit strides,
requiring up to 8 memory-access times, and in [4], using
small memory and up to 3 memory-access times.

In this paper, we present a trie-based IP-lookup
scheme, which performs parallel search of the match-
ing longest prefix. To reduce the search complexity, this
scheme uses controlled prefix expansion [5]. Our scheme
uses independent memories for allowing parallel access,
and finds the longest prefix match in a maximum of two

Prefix Next Hop
01* 21
10* 28
110* 9
1011* 1
0000* 68
01011* 51
00110* 3
10001* 6
100001* 33

10000000* 54

Table 1. Example of a forwarding table.

memory-access times. The presented algorithm is flexi-
ble for routing tables with diverse prefix length distribu-
tions. Because memories are separate per prefix length this
scheme presents high scalability.

The remainder of the paper is organized as follows.
Section 2 describes the data structures used and the com-
ponents of the proposed scheme. Section 3 describes the
lookup procedure of our scheme. Section 4 describes the
implementation of this scheme. Section 5 discusses the
proposed scheme. Section 6 presents our conclusions.

2. Parallel-Search Trie-based Scheme

The proposed scheme performs parallel access to indepen-
dent memory blocks, where eachblock stores the entries
existing for each group of prefix length. In this paper, we
refer to a prefix length as a tree level, i.e., there are up to
32 levels for IPv4 prefixes. Table 1 shows an example of
the contents of a forwarding table using CIDR. Figure 1
shows the CIDR entries of the example table presented in
a binary-tree structure. In this case, the tree has eight lev-
els, where level one is indicated by the first node below the
root, and level eight at the bottom. Our scheme consid-
ers that each level can be searched in parallel. To decrease
the number of parallel searches, the number of levels (with
prefixes) is minimized, into a small number of target lev-
els. To minimize the number of levels, we use controlled
prefix expansion [5]. The target levels can be selected by
using the most populated levels of an actual forwarding ta-
ble while considering the memory amount required by each
level. Once the levels are selected, the existing prefixes in
the removed levels are expanded to the immediate-longer
target level. Figure 2 shows the our previous example with
expanded prefixes to levels 2, 5, and 8.

Using the contents of actual routing tables [6], we
found that a large number of the prefixes are found between

572-104 54

0

0

0

0

0
0

0

0

0

0

0

0

0

1

1

11

1

1

1

1

1

1

1

1

1
0

Figure 1. Binary tree representing the forwarding table.

levels 16 and 24. Considering that population, we selected
tree levels (or prefix lengths) 8, 16, 24, and 32 as the target
levels in our scheme.

0

0

0

0

0 0

0

0

0

0

0

0

0

1

1

11

1

1

1

1

1

1

1

1

1 0

10 0

0

0 11

1

0 0

0 1

11 Eighth level
Bit vector

Eighth level
Bit vector

Fifth level
Bit vector

Fifth level
Bit vector

Second level
Bit vector

Second level
Bit vector

Figure 2. Bit vectors and stored prefixes in extended-prefix
tree.

2.1 Data Structures at Target Tree Levels

The set of all possible nodes at each level are represented
by bitmaps, where each bit position represents a binary
combination corresponding to the bits indicated by the pre-
fix length. In a bitmap, a bit with value of 1 indicates the
presence of a stored prefix, and a 0 denotes the absence of
it. The left-most bit of the bitmap corresponds to the deci-
mal 0, and the the right-most bit corresponds to the decimal
2

level-1, wherelevel is the level number. The bitmaps of
levels 8 and 16 are called bit vectors as2

8 and2
16 bits are

used, respectively, independently of the existence of pre-
fixes for each bit. The bitmaps for levels 24 and 32 are
called bit segments as only partial bit vectors containing
one or more prefixes are used.

The level-8 bit vector includes the prefixes between
expanded levels 1 to 7 and prefixes at level 8. This bit vec-
tor, calledprefixval8 is stored in a memory block together

with the next-hop information. Thelevel-16 bit vector is
similar toprefixval8 but this one includes those prefixes be-
tween levels 17 to 24. At this level, there are two other
bitmaps:childval24, which indicates whether there is one
or more prefixes of length between 17 and 24 indexed by
prefixval16, andchildval32, which indicates whether there
is one or more prefixes with a length between levels 25
and 32 indexed byprefixval16. Furthermore, the level-16
bit vectors are physically divided into 32-bit chunks. For
every 32-bit chunk, there is an offset value. Therefore,off-
setval16 is the offset value forprefixval16, offsetval24 is
the offset value forchildval24, andoffsetval32 is the offset
value forchildval32. The offset value of bit-chunk of bit
n16, wheren16 is the bit at level 16 inprefixval16, child-
val24, or childval32, stores the total number of ones accu-
mulated from all previous chunks. The size of these three
offset fields is 16 bits each. Thelevel-24 bit segment, or
prefixval24 has 256-bit intervals of rooted byprefix16, or
prefixes at level 24. These intervals are stored in a pseudo-
continuous for memory efficiency. This bit segment is de-
noted asprefixval24. The sum ofoffsetval24 and the num-
ber of ones to the left thechildval24 bit in the chunk is used
to find the corresponding interval at level 24. Thelevel-32
bit segment, or prefixval32, carries those216-bit intervals
at level 32, which correspond to the subtrees rooted bypre-
fix16, with prefixes at level 32, and it is used in the same
way as level-24 bit segment. Thenext-hop information
for prefixes in each level is stored in several tables, one ta-
ble per level, calledtablenextY , whereY = {16, 24, 32}.

3. Search Procedure

Consider the destination addressx of a packet in transit,
which can be represented in binary asx31, ..., x0, where
x31 is the most significant bit. During the first memory-
access time, the following fields are accessed:prefixval16,
childval24, childval32, offsetval16, offsetval24, andoffset-
val32 with bits x31, . . . , x16. In addition,prefixval8 and
tablenext8 are accessed, however, with bitsx31, . . ., x24.

During the second memory-access time, the following
fields are accessed:prefixval24, usingx23, . . ., x16, of the
interval indicated by the value stored inoffsetval24 plus the
number of ones on the left of bitchildval24 in the bit chunk.
The same is done forprefixval32, usingchildval32 andoff-
setval32. At the same time,tablenext16, tablenext24, and
tablenext32 are accessed.

During the second memory-access time, the com-
bined results of the fieldsprefixval8, prefixval16, child-
val24, andchildval32 are considered to determine which
level has a possible matching prefix, or candidate levels.
Note that a match at level 16 is confirmed after the first
memory-access time. The retrieved next-hop values from
thosetablenextY that are considered candidates are kept.

After the second memory-access time, the next-
hop information of the longest prefix value is selected
according to the result ofprefixvalueY, where Y =

{8, 16, 24, 32}.

4. Implementation

The bit vectors and bit segments are stored in a memory
block per level. Figure 3 shows the memory blocks for
each bitmap and next-hop tables. In the remainder of this
paper, we assume that tables, bit vectors, and bit segments

55

Level-16 bit vector
Level-24 bit

segment

Level-32 bit

segment
Level-8 bit vector

TableNext8 TableNext16 TableNext24 TableNext32

x
31

 … x
24

 x
23

 … x
16

x
15

 … x
8

x
7
 … x

0

Destination IP address of packet in transit

Next hop selection

Figure 3. Memory per each target level for parallel search.

counter

rule set
memory

next
address

Prefix Expansion
Control Unit

IP Addr

length

protocol

32

5

16

Addr2

write
signals

32

internal
counter

counter
(0-65535)

prefixVal16

child24Val

child32Val

1's counter

1's counter

1's counter

Offset Control Unit

offsetVal16

offsetVal24

offsetVal32

a) Prefix length expansion unit

b) ChildVal and Offsetval build unit

Figure 4. Prefix expansion units for building trie structure.

are stored in separate memory blocks. Specialized hard-
ware is used to build the trie data structure in the memory
blocks and to perform the lookup procedure. Each bitmap
is build using a prefix expansion unit, as show in Figure 4.a.
This unit is used for each used levels. After a prefix is ex-
panded, memory is accessed to store the prefixvalY, child-
valY, and offsetvalY, as needed. Figure 4.b shows the unit
to calculate offsetvalY for bit vector 16. Figure 5 shows
the implementation for the search process for level 24 and
32, as these are the one that need several values from mem-
ory to locate their prefixval locations. This unit uses the
childval and offsetval values stored at level 16.

5. Lookup Time

Matchings at level 8 are resolved in a single memory-access
time, and matching at levels 16, 24, and 32 are resolved
in two memory-access times. This memory-access time is
obtained at the expense of having memory separately allo-
cated for each level.

offsetVal24

child24Val
Addr2[31..16]

16

read

PrefixVal Address
Control Unit

Addr2[31..21]
11

prefixVal24

1 in

write
Addr2[15..7]

Figure 5. Unit to search for prefixval24. Similar unit is
used for prefixval32.

6. Conclusion

We proposed a trie-based IP lookup algorithm that per-
forms parallel search for the longest prefix. Controlled pre-
fix expansion is used to reduce the number of different pre-
fix lengths or levels, and separate memory blocks to reduce
the number of memory-access times. As a result, the pro-
posed scheme finds the longest match in up to two memory-
access times. As an example, we selected four prefix levels
(prefix lengths): 8, 16, 24, and 32. The algorithm searches
for a match in levels 16 and 8 at the first memory access.
Then it verifies a match in levels 24 and 32, and retrieves
all possible next hops, one per level in the second mem-
ory access. If matches are achieved at different levels, the
match belonging to the longest prefix is selected. This re-
sults in having two-memory access time in any case. We
also presented the design of special hardware for building
the trie structure and lookup procedure. The design gives
the option for a fast implementation in addition to using a
network processor.

References

[1] D. R. Morrison, “PATRICIA - Practical Algorithm to
Retrieve Information Coded In Alphanumeric,” Jour-
nal of the ACM, 15(4), pp. 514-534, October 1968.

[2] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink,
“Small forwarding tables for fast routing lookups,”
ACM SIGCOMM, pp.3-14, 1997.

[3] D. E. Taylor, J. S. Turner, J. W. Lockwood, T. S.
Sproull, and D. B. Parlour, “Scalable IP Lookup for
Internet Routers,” IEEE J. of Select. Areas in Com-
mun., Vol. 21, Issue 4 , pp. 522-534, May 2003.

[4] N-F. Huang, S-M. Zhao, J-Y. Pan, and C-A. Su, “A
Fast IP Routing Lookup Scheme for Gigabit Switch-
ing Routers,” IEEE INFOCOM ’99, Vol. 3, pp. 1429-
1436, March 1999.

[5] V. Srinivasan and G. Varghese, “Faster IP lookups us-
ing controlled prefix expansion,” ACM Trans. Com-
put. Syst., pp. 1-40, Feb. 1999.

[6] BGP Table Data, http://bgp.potaroo.net.

This work has been partially sponsored by National Science
Foundationtion under Award 0425350.

Acknowledgement

56

