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3-D Volume Reconstruction of Skin Lesions for
Melanin and Blood Volume Estimation and Lesion

Severity Analysis
Brian D’Alessandro, Atam P. Dhawan, Fellow, IEEE

Abstract—Subsurface information about skin lesions, such as
the blood volume beneath the lesion, is important for the analysis
of lesion severity towards early detection of skin cancer such as
malignant melanoma. Depth information can be obtained from
diffuse reflectance based multispectral transillumination images
of the skin. An inverse volume reconstruction method is presented
which uses a genetic algorithm optimization procedure with a
novel population initialization routine and nudge operator based
on the multispectral images to reconstruct the melanin and blood
layer volume components. Forward model evaluation for fitness
calculation is performed using a parallel processing voxel-based
Monte Carlo simulation of light in skin. Reconstruction results for
simulated lesions show excellent volume accuracy. Preliminary
validation is also done using a set of 14 clinical lesions, categorized
into lesion severity by an expert dermatologist. Using two
features, the average blood layer thickness and the ratio of
blood volume to total lesion volume, the lesions can be classified
into mild and moderate/severe classes with 100% accuracy.
The method therefore has excellent potential for detection and
analysis of pre-malignant lesions.

Index Terms—transillumination, multispectral imaging,
melanoma, hemoglobin, volume reconstruction, skin lesions,
dermoscopy

I. INTRODUCTION

MALIGNANT melanoma is expected to result in over
9,100 deaths in 2012 [1], but the survival rate is quite

high if the cancer is detected early. Hence, the early detection
of malignant skin lesions is critical to preventing death.
Conventional analysis of suspicious skin lesions involves
visual examination by a trained expert aided with surface
lighting and magnification to analyze the visible structure of a
nevus [2]. However, the deeper pigmentation structure is often
overcome by the surface light reflection, and thus, important
information regarding the depth extent of the malignancy is
obscured. Deeper subsurface information, such as indications
of increased blood flow (angiogenesis) are critical factors in
early melanoma detection [3]. As a result, much effort is being
put into the evaluation of novel noninvasive optical imaging
techniques as a way to detect and analyze the morphological
changes associated with tumorigenesis, thereby improving
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patient diagnosis accuracy with minimal need for invasive and
time consuming biopsy procedures.

Advanced optical imaging modalities including optical co-
herence tomography and confocal microscopy have been in-
vestigated for skin lesion imaging [4], [5]. However, these
imaging technologies are still expensive and may require spe-
cialized training to read the resulting images [6]. Small, inex-
pensive hand-held devices such as the DermLite or DermScope
illuminate a skin lesion with polarized light, thus greatly
reducing specular reflection. However, diagnosis of the lesions
imaged is still left up to the physician, which is subjective and
therefore can vary significantly. Accuracy of diagnosis also
decreases for non-expert physicians who do not specialize in
melanoma detection [7]. Furthermore, the use of white light
does not allow for accurate depth and chromophore analysis.

As a result, there has been much investigation into computer
aided analysis of dermoscopy images, some even utilizing
multispectral imaging [8]–[10]. However, many of these meth-
ods only propose to differentiate between malignant and
benign skin lesions, but do not identify any early indicators
of lesion severity such as angiogenesis which could lead to an
early diagnosis of skin cancer. Other work has been performed
to separate out melanin and blood contents of the skin, using
techniques such as ICA [11] or the differential modified
Beer–Lambert law [12], but these do not have the goal of
melanoma and lesion severity detection, nor do they attempt
to reconstruct the volumetric measurements of skin lesions, or
the blood present beneath these skin lesions, which is a much
more difficult problem. Other methods to map erythema, such
as Tissue Viability Imaging even produce false red blood cell
concentration values at the locations of pigmented lesions [13].

MelaFind, a commercial device, aggregates multispectral
features into a single “disorganization” factor which is in-
tended to aid a trained dermatologist in the decision to biopsy
[14]. However, the specificity is low (9.9%). SIAscopy, on
the other hand, claims to separate out melanin, blood, dermal
melanin, and collagen from a series of multispectral images in
the infrared and near infrared range [15], [16]. The method is
based on Kubelka-Munk theory of a homogenous layered skin
model to find a tissue color to histological parameter mapping,
which is then applied pixel-by-pixel in the acquired images.
However, this may not capture diffuse light interactions of
heterogeneous lesion tissue or the point spread function (PSF)
of deeper tissue [17].

Additionally, the dermoscopy techniques discussed above
use surface illumination. Even if cross-polarization is used,
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Fig. 1. Light pathways of diffuse reflectance imaging (transillumination).

the majority of surface light is reflected back within the
first few layers of skin, which limits the visualization of
deeper structures. To overcome this limitation, a device known
as the Nevoscope utilizes transillumination light microscopy
(TLM) for imaging skin lesions. The Nevoscope contains a
fiber optic ring light source that is placed against the skin.
Light diffuses through the skin tissue beneath the lesion
through scattering and absorption events, forming a backscat-
tered transilluminated image of light which scatters up from
behind the lesion (see Fig. 1). As a result, TLM imaging
is able to visualize subsurface information more effectively
by completely blocking surface illumination. Furthermore,
images can be obtained using a multispectral light source,
thus providing additional depth and chromophore information
through multispectral imaging.

The goal of this work, then, is to reconstruct a 3D volume
estimate of the skin lesion from TLM images (see Fig. 2).
This is known as the inverse model of imaging. The forward
model of imaging takes a known volume structure, and finds
the multispectral TLM images. This forward model can be
simulated through the use of a Monte Carlo simulation of light
propagation in skin [18]. Previously, the inverse model was
attempted by using Taylor series expansion to approximate the
forward model using the first derivative (Jacobian) and matrix
multiplication [19]. Since a large number of forward model
executions are needed to evaluate the inverse model, this was
done for reasons of speed. Once the initial Jacobian matrix
is pre-computed through Monte Carlo simulation, subsequent
forward model executions merely involve matrix multiplica-
tion, a computationally inexpensive operation. The downside is
that this forward model approximation substantially increases
in error the further away the point of evaluation deviates
from the point of approximation. However, the authors have
instead developed a voxel-based parallel processing Monte
Carlo simulation of light in the skin, which is substantially
faster than previously possible [20] and far more accurate
than Taylor series approximation. Other researchers have used
optimization with MCML [18] to reconstruct skin parameters
[21]–[23], but the use of MCML requires the assumption that
skin layers are homogenous. While this may be useful for
certain skin conditions such as port wine stain, erythema, or
global inflammation, it is not applicable for analysis of highly
spatially-variant skin lesions.

With the voxel-based Monte Carlo method, the forward
imaging model is well defined for simulation. However, the
inverse model is much more difficult to find, and is ill-posed,
meaning there are possibly many solutions. Since the sub-
surface 3D volume of a lesion is unknown, the multispectral

x

y

z

Inverse volume reconstruction

680 nm            780 nm            875 nm

Multispectral Transillumination Images

3D Volume

Fig. 2. Objective of the inverse reconstruction algorithm.

Nevoscope image set is used to reconstruct an estimate of
the volume with depth and chromophore information. Hence,
although imaging is not performed tomographically, volumet-
ric estimates are made based on the topographic multispectral
images. The most common chromophores encountered in
the skin are melanin and the main components of blood:
oxygenated hemoglobin and deoxygenated hemoglobin. It is
the absorption coefficient, µa, at individual locations within
the tissue volume which give critical information about the
three-dimensional distribution and depth of the lesion, size of
the blood volume, as well as the relative amounts of the major
chromophores. Thus, the problem is to find the unknown voxel
grid of µa(x, y, z), which when passed through the forward
model, produces images which are closest to the actual images
obtained from the Nevoscope. This is an optimization problem
which can be solved by numerous methods, one of which is
through a genetic algorithm (GA).

An initial estimate of the 3D skin lesion volume is made
based on the a priori characteristics extracted from the mul-
tispectral transilluminated image set. This initial estimate is
then used as a seed to generate a population of volume
solutions which are randomized around that initial estimate.
This population of solutions then proceeds through a GA-
based optimization process to iteratively reconstruct an optimal
solution within a wide to an increasingly narrow search space.
Features from this optimal reconstructed volume, such as
depth, melanin volume, and blood volume, are extracted as
features for lesion severity classification. Through the novel
techniques described in this paper, a parallel processing Monte
Carlo simulation, as well as a novel GA initialization routine
and operator based on knowledge gained from the multispec-
tral images, the accuracy of lesion volume reconstruction is
substantially improved over previous work. Furthermore, a
set of 14 clinical lesions have been analyzed for the first
time, for a preliminary validation of the methods discussed.
The proposed methodology has many benefits over other
skin lesion analysis methods, including the use of a voxel-
based Monte Carlo simulation which simulates irregularly
shaped lesions and heterogeneous skin layers with spatially
variant chromophore distributions, use of the ring geometry of
the Nevoscope which allows for improved depth information
recovery, as well as a correspondence of our recovered features
to lesion severity with an aim towards early diagnosis, not just
a benign/malignant differentiation.
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Fig. 3. The two-layered skin lesion model. The shallow layer consists of
melanin while the deep layer consists of blood.

II. TWO-LAYERED SKIN MODEL

It is well-known that a pigmented skin lesion consists of
additional melanin compared to the background skin. Further-
more, a skin lesion may possess a distinct vascular pattern
beneath the lesion. This network of blood vessels is more
prevalent in malignant lesions than in benign lesions [3]. With
this in mind to assist in reconstruction, a two-layered skin
lesion model is implemented (see Fig. 3). The volume bounded
by the skin surface and the shallow layer boundary consists
of some volume fraction of melanin CM, while the volume
bounded by the shallow layer boundary and the deep layer
boundary consists of some volume fraction of blood CB. Such
a simplified two-layered model has been used before in lesion
reconstruction [19]. The blood layer contains a mixture of Hb
and HbO2 depending on the oxygen saturation level, [SO2].
These chromophore volume fraction parameters can be used
with their known chromophore absorption coefficients to find
the specific µa values of each layer [24], [25]:

µBG
a (λ) = (1− CM − CB)µbaseline

a (λ) (1)
µML
a (λ) = CMµ

melanin
a (λ) (2)

µBL
a (λ) = CB

(
[SO2]µHbO2

a (λ)

+ (1− [SO2])µHb
a (λ)

)
(3)

where µBG
a , µML

a , and µBL
a are the absorption coefficients of the

background skin, melanin layer, and blood layer respectively.
In order to simulate this lesion model, a Monte Carlo

based forward model of imaging is utilized. The lesion is
discretized into a three dimensional voxel grid, where each
voxel allows for an individual set of wavelength-dependent
optical properties such as the absorption coefficient µa(λ), the
scattering coefficient µs(λ), and the anisotropy factor g(λ).
While reported values vary, both µs and g can be assumed
to be approximately equal in the epidermis and dermis [24],
[26], and can be represented in terms of the reduced scattering
coefficient µ′s as a combination of Mie scattering and Rayleigh
scattering by:

µs (λ) = µ′s (λ) /(1− g (λ)) (4)

µ′s (λ) = 2 · 105λ−1.5 + 2 · 1012λ−4 [cm−1] (5)

g(λ) = 0.62 + 0.29 · 10−3 · λ (6)

To simulate the forward imaging model, individual photons
of light are propagated through the defined voxel volume.
Photons enter the volume at a random location within a 0.5
mm wide ring light source with an outer diameter of 1.175 cm.
The photons are initially directed at a 45◦ angle downwards
towards the center of the ring.

Well-known equations govern the step lengths, intensity
reduction, and scattering angles of these discrete photons as
they traverse through each voxel, which are dependent on the
optical properties of that voxel [18]. Photons which backscatter
through the skin surface add to the diffuse reflectance image.
Simulating millions of these photons is necessary to average
the light path through the tissue volume and lesion in order
to obtain a simulated transillumination image of backscat-
tered light at the surface. Since these photons are simulated
independently of each other, they are highly amenable to
parallel processing on a desktop graphics card. Simulation of
10 million photons using the Monte Carlo simulation from
Wang et al. [19] took 1 hour and 13 minutes on a 3.16
GHz dual core CPU, whereas the GPU-enhanced simulation
took only 1.29 seconds [20]. This speed improvement of over
3000× allows a higher accuracy of Nevoscope simulation than
what was previously possible from Taylor series expansion of
the Monte Carlo forward model [19], since the Monte Carlo
forward model can be used directly rather than simply a first-
order approximation of it. To illustrate the errors possible
in a first-order Taylor series forward model approximation,
a 0.5×0.5×0.1 cm3 object was embedded in the top layer
of a virtual volume at the center of the illumination ring.
Images produced by the approximation were compared with
“true” images produced by direct Monte Carlo simulation.
In both cases, 100 million photons were simulated. When
approximating the Taylor series around a background µa of
0.25 cm−1, less than 10% error was observed when µa of
the object = 1.5 cm−1. However, as µa increased past 3.5
cm−1, the error exceeded 50%. Clearly, the loss of accuracy
using Taylor series approximation is substantial. Direct use
of the Monte Carlo simulation in inverse reconstruction was
previously impossible, as it would have required an inordinate
amount of time. However, the parallel GPU-based Monte
Carlo simulation solves this problem. In this way, accurate
simulated Nevoscope transillumination images can be obtained
for lesions of any size, shape, and composition in an acceptable
amount of time.

III. INITIAL VOLUME ESTIMATE

A good initial volume estimate is highly beneficial for a
faster and more accurate final volume search through genetic
algorithm optimization. By using the Monte Carlo simulation
forward model, a Beer’s law correction factor, specific to the
Nevoscope geometry, was estimated in order to relate the
pixel intensity seen in the surface TLM images to the ab-
sorption coefficient and depth of an embedded object adjacent
to the skin surface. Details of this procedure are discussed
in [27], [28], but to summarize, an equation of the form
I/I0 = f (µa, `) was developed where I is a pixel intensity
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TABLE I
RATIO OF MELANIN ABSORPTION TO BLOOD ABSORPTION

Wavelength (nm) µmelanin
a /µblood

a
600 2.87
680 14.97
780 9.54
800 8.75
875 4.94

Values displayed for CM=5%, CB=20%, and [SO2]=75%.

value in an image with the object, I0 is the intensity of the
same pixel in the background image without the object, µa
is absorption coefficient of the object, and ` is the depth
of the object. Scattering was assumed to be constant. The
function was approximated by f (µa, `) ∼ exp(R(µa, `))
where R(µa, `) was fit through Monte Carlo simulation over
a range of values for µa and `. If this correction function f
is written as I/I0 = f (µa, `), then an inverse function to
approximate the object depth ` at pixel location (x, y) can be
produced by:

`(x, y) = f−1
(
µa,

I

I0

)
(7)

To estimate the thickness of the melanin layer, `ML, the
wavelength is used where the ratio of the absorption of melanin
to the absorption of blood is greatest. Within the range of
wavelength filters which were used for imaging (600, 680, 780,
and 875 nm), 680 nm provides the largest µmelanin

a /µblood
a ratio

(see Table I for an example). Imaging at this wavelength can be
roughly assumed to visualize melanin alone. Thus, the initial
estimate of the melanin layer thickness in the two-layered skin
lesion model is:

`ML(x, y) = f−1
(
µML
a (680),

I

I0
(680)

)
(8)

To find an estimate of the blood layer thickness, the wave-
length with the smallest µmelanin

a /µblood
a ratio is similarly used,

600 nm. However, melanin is still a large component of the
absorption image at this wavelength and must be canceled
out. The solution of `ML

600(x, y) = f−1
(
µML
a (600), II0 (600)

)
provides the estimated thickness of the lesion as if it were
100% melanin. Subtracting the previous result for `ML(x, y)
results in the difference in thickness measurements, presum-
ably due to the presence of blood. However, since this blood
thickness has been estimated with an absorption coefficient of
µML
a (600), the thickness must be modified accordingly by the

ratio of c = µML
a (600)/µBL

a (600). Thus, the initial estimate of
the blood layer thickness `BL(x, y) is:

`BL(x, y) = c ·
(
`ML
600(x, y)− `ML(x, y)

)
(9)

These estimates of `ML(x, y) and `BL(x, y) are adequate but
can still be improved further. The surface imaging response of
objects within the skin has a specific wavelength and depth-
dependent point spread function [17]. Knowledge of this point
spread function can be used to deconvolve the initial volume
estimate at each depth interval in the voxel grid.

To that end, the PSF of objects within the Monte Carlo
simulated volume was determined. To find the PSFs of objects
at various voxel grid depths z simulated by the Monte Carlo

simulation, slabs one voxel thick of large absorption were
embedded in a virtual volume taking up half of the imaging
field of view. This allows for an accurate measurement of
the depth and wavelength dependent edge spread function,
ESF(z, λ), from which the PSFs were derived mathematically
[29]–[31]. Since the 2D PSFs are also a function of (x, y), the
whole set is denoted as PSF(x, y, z, λ).

Knowing PSF(x, y, z, λ), deconvolution of the layer depth
estimates can proceed. Initially, a depth estimate `(x, y) is
converted to a binary volume L0(x, y, z) such that a 1 repre-
sents the presence of an absorber in voxel (x, y, z) and a 0
represents the absence of an absorber:

∀z ∈ N1 : L0(x, y, z) =

{
1 if z ≤ `(x, y)

0 otherwise
(10)

With this initial volume model, each z layer is deconvolved.
The residual of each deconvolution is then projected to the next
deepest layer, resulting in the final deconvolved binary volume
model Lf (x, y, z). This procedure can be written as:

Lf (x, y, z) = min(
⌊
Li(x, y, z) ∗−1 PSF(x, y, z, λ)

⌉
, 1)

(11)
where:

Li(x, y, z) = L0(x, y, z) + ε(x, y, z − 1)

ε(x, y, z) = max(
⌊
Li(x, y, z) ∗−1 PSF(x, y, z, λ)

⌉
− 1, 0)

ε(x, y, 0) = 0

and ∗−1 denotes Wiener deconvolution with a signal-to-noise
ratio (SNR) of 6.25. This value was calculated empirically and
was found to work acceptably well at deconvolution across the
utilized wavelength and depth ranges.

The above process is performed on `ML and `ML+BL

where `ML+BL = `ML + `BL. This produces LML
f (x, y, z) and

LML+BL
f (x, y, z) as the deconvolved binary volumes. Next,

LBL
f (x, y, z) = LML+BL

f (x, y, z) − LML
f (x, y, z) is found, and

the binary volumes for both the melanin and blood layers are
converted back to thickness maps:

`f (x, y) =
∑
z

Lf (x, y, z) (12)

Minimum and maximum value constraints are imposed on the
thickness of each of these volumes such that `ML

max and `BL
max

are the maximum thickness of the melanin and blood layer,
respectively, resulting in the final thickness maps, `ML

f and `BL
f ,

for the melanin and blood layers of the initial volume estimate.
Furthermore, since the original set of model parameters

(CM, CB, and [SO2]) had fixed assumed values, the initial
volume estimate and GA reconstruction procedure must be
performed for each combination of parameter values within a
desired range. The final estimated set of parameters is selected
based upon the solution that produces the highest fitness.

IV. GENETIC ALGORITHM FOR 3D RECONSTRUCTION

While the initial volume estimate provides a good “first
guess” at the shape of the subsurface lesion and the size of
the melanin and blood layers, a number of assumptions are
involved which can lead to inaccurate estimates. Consequently,
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a more robust reconstruction must be undertaken while aided
by knowledge of the initial volume estimate. Since the 3D
reconstruction process is ill-posed, a GA-based optimization
process is used to search the solution space for an optimal
solution [32].

A. Population Initialization

The GA for volume reconstruction begins by initializing
a population of proposed solutions. Each proposed solution
is encoded as a “chromosome” for use during the GA. The
chromosome for one particular individual in the population
is defined by both the melanin and blood thickness maps.
For example, the chromosome for the initial volume estimate
(henceforth known as the model chromosome) is defined as the
set { `ML

f , `BL
f }. The values in each chromosome, known as

alleles, represent the thickness of the respective chromophores.
Since these thickness values are equivalent to the number of
voxels in the z direction, chromosome alleles are always whole
numbers. To further assist the reconstruction process, a mask
is defined to ignore reconstruction at (x, y) locations where the
lesion is not present. Thus, a lesion ROI is defined as a binary
mask m(x, y), and is segmented manually from the acquired
images.

Members of the GA population are varied around the model
chromosome according to three categories, selected at random
for each member. For the shallow bias category, each allele has
a 15% chance of decreasing by 1 (meaning the depth at that
position becomes shallower), an 80% of not changing, and a
5% chance of increasing by 1 (the depth becomes deeper).
For the no bias category, the chances are 10%, 80%, and
10%, respectively. For the deep bias category, the chances are
5%, 80%, and 15%, respectively. In this manner, population
variability is maintained, but each chromosome is based on
the model chromosome.

B. Fitness Evaluation

Chromosomes are evaluated as to their fitness by executing
the forward model on the chromosome, and then comparing
the forward model simulated TLM images with the real TLM
images. In order to run the Monte Carlo simulation on a
given chromosome { `ML, `BL }, the thickness maps within
that chromosome are converted into a voxel volume with
correct absorption coefficients for the wavelength simulated.
Propagation of light through this volume is then simulated.
The fitness F of each chromosome is then evaluated by
a comparison between the multispectral images of the true
lesion (I real

λ ) and the images generated by the forward model
simulation (Iλ) on that chromosome, within the defined mask:

F = − ln

 1

NλN`

∑
λ,x,y

|Iλ(x, y)− I real
λ (x, y)|

I real
λ (x, y)

m(x, y)


(13)

where Nλ is the number of wavelengths used for imaging, and
N` is the number of depth points within the mask such that
N` =

∑
x,ym(x, y).

C. Genetic Algorithm Operators

Once the population of chromosomes is initialized, the
GA proceeds by altering this population through a set of
reproduction operators. The implemented GA for volume re-
construction uses steady state reproduction without duplicates,
uniform crossover, random mutation, nudge mutation, and a
novel intelligent nudge operator. Chromosomes are selected
for reproduction by a roulette wheel with rank normalization
on the fitness. The random mutation operator gives each allele
in the selected chromosome a 0.8% chance of mutating to a
random new value within the layer thickness constraints. The
nudge mutation operator mutates alleles only by +1 or −1
from their current value; the direction is chosen at random.

The proposed intelligent nudge operator is based on the hill-
climbing optimization technique, but the selection of alleles
to nudge is derived from knowledge of the chromophores
involved and their effect on the multispectral images. It is
designed such that a nudge mutation occurs only in the
volume region which produces the maximum error between
the simulated and true images. First, a difference map is found
at 680 nm, representing the difference primarily due to errors
in the melanin layer:

D680(x, y) = I680(x, y)− I real
680(x, y) (14)

Next, the pixel location (i, j) of the maximum absolute value
of this difference image is found:

(i, j) = arg max
x,y

(|D680(x, y)|) (15)

Finally, the melanin layer thickness map of the roulette se-
lected chromosome { `ML

0 , `BL
0 } is adjusted by ±1 depend-

ing on the necessary direction:

`ML(i, j) = `ML
0 (i, j) + sgn(D680(i, j)) (16)

The blood layer thickness map is also adjusted. A difference
image is found at 600 nm, but since this difference image
will still include error from the melanin layer, D680(x, y) is
subtracted out, with adjustment made for the difference in
melanin absorption coefficient between 600 and 680 nm:

D600(x, y) =
[
I600(x, y)− I real

600(x, y)
]

−µ
ML
a (600)− µBG

a (600)

µML
a (680)− µBG

a (680)
D680(x, y)(17)

As before, the location of the maximum difference due to
blood error is found, and a nudge of ±1 is made in the blood
thickness map in the proper direction based on D600 to find
`BL. Correct boundaries on the melanin and blood layers are
enforced, the new chromosome { `ML, `BL } is updated to
find its new fitness, and the GA proceeds.

Only one operator is chosen for each generation, and the
selection is made by a roulette. Additionally, the probability
of selecting each operator is changed over the course of the
GA. For example, an initial operator probability could be 80%,
10%, and 10% for crossover, mutate, and nudge respectively;
but these could be linearly scaled towards 20%, 40%, and
40% by the final generation. The motivation for this is that
a high crossover rate early in the GA is beneficial for initial
exploration through the global search space. However, as the
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population converges, a higher mutation rate is beneficial for
improved local search. Furthermore, the number of photons
used for simulation is interpolated from a low number to a
higher number (for example, 1.5 × 106 to 3 × 106) over the
course of the GA. The reason for this is to save computation
time where possible: faster, but noisier images are acceptable
initially during the global search stage, while images with a
higher SNR are needed during the final stages of the GA to
better differentiate chromosomes which vary only by small
mutations. The number of generations for the GA was limited
to the nearest thousand after the difference in fitness between
the 100-generation moving average and the 10-generation
moving average was less than 0.05%.

After the conclusion of the GA, the best lesion volume
estimate, { `ML

best, `BL
best }, can then be evaluated to extract fea-

tures to be used in a classifier for the detection of precancerous
skin lesions.

V. VOLUME RECONSTRUCTION RESULTS ON SIMULATED
LESIONS

A. Reconstruction of a Two-Peaked Mixed Gaussian at 16×16

To test the accuracy of the proposed method for inverse
volume reconstruction, an artificial lesion was simulated. Ini-
tially, the same model was used as in the prior work [19]
for an accurate comparison of results. The model consists
of a two-layered, two-peaked, mixed Gaussian lesion (whose
defining equations are detailed in [19]; see Fig. 3) set within a
12×12×5 mm3 volume of voxel dimensions 16×16×50 (for a
voxel size of 0.75×0.75×0.1 mm3), with CM=5%, CB=20%,
and [SO2]=75%. The use of a two-peaked Gaussian shape
model allowed for sufficient spatial and depth variation in
order to evaluate the reconstruction. The shallow layer was
restricted to 0-0.6 mm (`ML

max = 6) while the deep layer was
restricted to 0-0.2 mm (`BL

max = 2). Segmentation of the image
to only the region of interest limited the number of depth
control points to 35, significantly higher than the previous
work which used only 9. Thus, each chromosome in the GA
was of length (35 control points)·(2 layers) = 70. Volume error
for the shallow melanin layer & deep blood layer (∆VML and
∆VBL) were calculated by:

∆V =
|
∑
x,y `best(x, y)−

∑
x,y `true(x, y)|∑

x,y `true(x, y)
(18)

where `best is the thickness map for one layer in the best fit
chromosome after the conclusion of the GA and `true represents
the true thickness map for that layer from the lesion model.
Results are presented in Table II.

The proposed method of using the parallel processing Monte
Carlo simulation as the forward model (rather than a Taylor
series approximation) during reconstruction was first evaluated
using imaging at single wavelengths separately: 600, 680, 780,
and 875 nm, followed by using a combination of all four
wavelengths. For these cases, the GA population was initial-
ized randomly and used the crossover and random mutation
operators. Volume errors are listed in Table II(b). As can be
seen, the improved forward model accuracy provides superior
results to the previous Taylor series-based work [shown in

TABLE II
RESULTS COMPARISON FOR A TWO-PEAKED GAUSSIAN LESION MODEL

Melanin
Vol Error

Blood Vol
Error

Time

(a) Previous approach
Wang, et al. [19]; 580, 800 nm 2.68% 16.58% –

(b) Random initialization, crossover, random mutation
Proposed; 600 nm 1.18% 10.71% 3512 s
Proposed; 680 nm 0.62% 13.84% 3357 s
Proposed; 780 nm 0.64% 13.46% 3161 s
Proposed; 875 nm 0.52% 9.36% 3083 s
Proposed; 600, 680, 780, 875 nm 0.33% 3.57% 5609 s

(c) Intelligent initialization, crossover, random mutation
Proposed; 600, 680, 780, 875 nm 0.00% 1.33% 5715 s

(d) Intelligent initialization, crossover, intelligent nudge
Proposed; 600, 680, 780, 875 nm 0.00% 0.41% 3449 s
Reconstruction parameters: (a) see [19]. (b-c) 200 population size, 5000
generations, 1.5× 106-3× 106 photons, 80%-20% crossover rate, 10%-40%
random mutation rate with mutation probability 0.8%, 10%-40% nudge rate.
(d) 50 population size, 1000 generations, 3×106-12×106 photons, 40%-20%
crossover rate, 10%-10% nudge rate, 50%-70% intelligent nudge rate.

Table II(a)] at both layers in all trials. Furthermore, evaluation
using a multispectral imaging set of four wavelengths is
superior to using imaging at single wavelengths alone.

The accuracy can be improved even further through use
of the novel intelligent initialization procedure. For the same
lesion model, the melanin volume error was reduced to 0%,
with a mere 1.33% blood volume error [see Table II(c)].
Clearly, starting the GA population much closer to the search
space where the solution lies results in a much higher accuracy
with a similar execution time as random initialization.

The accuracy of volume reconstruction is improved even
more through the inclusion of the intelligent nudge operator
in the GA. With this operator, the melanin volume error is
maintained at 0%, but the blood volume error is reduced to
0.41% [see Table II(d)]. Moreover, since the intelligent nudge
operator brings such a benefit to the GA reconstruction, only
1000 generations need to be simulated to reach convergence,
which reduces the execution time of the algorithm. The reason
for the improvement in accuracy is that the intelligent nudge
operator incorporates knowledge of the multispectral images
in deciding which alleles to nudge, as opposed to the other
operators (crossover, random mutation, and nudge mutation)
which are blind to this specific application and function
simply on evolutionary principles. A hybrid GA such as this,
incorporating a priori knowledge of the specific problem, is
bound to outperform a conventional GA. Most definitely then,
the combination of intelligent initialization, crossover, and
intelligent nudge within the GA is quite robust and highly
accurate at reconstructing the unknown volume of a skin lesion
based on multispectral transilluminated images.

B. Reconstruction of a Two-Peaked Mixed Gaussian at 32×32

Given such good results, reconstruction at a finer x-y
resolution, 32×32, was then attempted. The z resolution was
left at 50 voxels, resulting in a voxel size of 0.375×0.375×0.1
mm3. To initialize the 32×32 GA population, several options
were attempted:

1) Random initialization of the new GA population.
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TABLE III
COMPARISON OF VARIOUS METHODS OF INITIALIZING A 32×32 GA

Initialization Method Fitness Melanin Vol
Error

Blood Vol
Error

Random 2.3641 32.12% 22.00%
Interp from 16×16, Bicubic 3.5184 6.62% 13.00%
Intelligent init, no deconv 3.8080 4.30% 23.00%

Intelligent init, with deconv 4.0967 0.66% 13.00%
True Volume 4.1738 0.00% 0.00%

The 16×16 solution used for interpolation was obtained from Table II(d).
Chromosome fitness was calculated using 1.2 × 107 photons and averaged
over five MC runs.

2) Interpolation of the solution obtained from the 16×16
reconstruction.

3) Generation of a completely new model chromosome
using the method described in Section III.

The results of these methods are presented in Table III, which
lists the fitness, melanin volume error, and blood volume
error for the model chromosome generated by each method (a
random chromosome was selected for the random initialization
case), compared to the fitness for when true volume itself is
run through the MC simulation a second time. Since the MC
simulation inherently involves a measure of randomness, the
simulated TLM images will be slightly different after repeated
executions. This true volume fitness therefore represents a
theoretical maximum limit on fitness imposed by the noise
present in the simulation.

Not surprisingly, the random initialization results in the
largest volume errors. Interpolation from the 16×16 solution
was better, however, the best results came from recomputing
an initial volume estimate for the 32×32 case. This initial
volume estimate was tested with and without the deconvolution
step. It is clear that deconvolving the estimate obtained from
the corrected equation substantially improves the accuracy of
the model chromosome, producing a fitness very close to the
maximum fitness allowed by noise and a melanin volume error
of nearly 0%. As these procedures are used to initialize a
population for GA optimization, this error decreases further
after the conclusion of the GA.

C. Reconstruction of Cuboid Lesions of Various Depths

Rectangular prism shaped lesions (cuboids) were also sim-
ulated to gain an understanding of the depth at which recon-
struction could still be performed reliably. It is clear from
the results in Table IV that reconstruction within 1 mm is
reasonably good, especially for the melanin layer. However,
as the depth of the lesion increases, the blood volume error
also increases. As the lesion extends deeper into the skin, it
is harder to estimate the deeper profile and composition.

D. Reconstruction of a Four-Peaked Mixed Gaussian

To vary the shape even more, two additional peaks were
added to the 16×16 two-peak mixed Gaussian model, to create
a four-peaked model visualized in Fig. 4. The reconstruction
results were good, with a melanin volume error of 0.8%
and a blood volume error of 9.38%. Fig. 4 shows both the
true and reconstructed volumes for this four-peak model. The

TABLE IV
CUBOID LESION RECONSTRUCTION RESULTS

Melanin
Thickness

Blood
Thickness

Melanin Vol
Error

Blood Vol
Error

Time

0.3 mm 0.1 mm 0.00% 0.00% 3946 s
0.6 mm 0.2 mm 0.00% 5.56% 3747 s
0.9 mm 0.3 mm 1.85% 12.04% 8044 s
1.2 mm 0.4 mm 0.69% 32.64% 8308 s

Reconstruction performed using 600, 680, 780, and 875 nm on lesions 4.5×4.5
mm2 in the x-y dimension, CM=5%, CB=20%, and [SO2]=75%. The voxel
grid was of size 16×16×50, with a voxel resolution of 0.75×0.75×0.1 mm3.
The 0.3 mm and 0.6 mm melanin thickness cuboids were reconstructed using
the same parameters as Table II(d) with `ML

max = 6, and `BL
max = 2. The 0.9

mm and 1.2 mm melanin thickness cuboids were also reconstructed using the
same parameters, but for 3000 generations, `ML

max = 12, and `BL
max = 4.
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Fig. 4. Reconstruction results on the two-layered four-peaked Gaussian
model. (a) Shallow surface true model and (b) reconstruction. (c) Deep surface
true model and (d) reconstruction. Parameters: same as Table II(d).

shapes match closely, with all four peaks visibly recovered
during reconstruction, despite the peaks having been defined
at different depths.

E. Reconstruction with Varying Model Parameters

For real-world imaging, the true parameters, CM, CB, and
[SO2], would be unknown. To determine if these chromophore
parameters could be recovered correctly based on selecting the
parameter set which produces the highest fitness in the GA,
reconstruction was re-run multiple times, each time changing
the model parameters assumed during reconstruction. The two-
peak Gaussian, cuboid, and four-peak Gaussian models were
simulated with a true parameter set of CM=5%, CB=20%, and
[SO2]=75%. For all three models, CM was varied between 4%
and 6%, CB was varied between 10% and 30%, and [SO2] was
fixed to 75%. Throughout this work, [SO2] was assumed to be
a constant in order to simplify the search space by reducing
the number of variables to be solved. In future work, [SO2]
could also be a variable which is estimated during simulation
similar to CM and CB . [SO2] in melanoma lesions can vary
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TABLE V
MODEL PARAMETERS VERSUS FINAL FITNESS

CM
CB

10% 20% 30%
4% 4.392 4.280 4.287
5% 4.695 4.745 4.598
6% 3.975 3.947 4.049

(a) Two-Peaked Lesion Model

CM
CB

10% 20% 30%
4% 4.201 4.196 4.186
5% 4.216 4.236 4.213
6% 4.203 4.183 4.193

(b) Cuboid Lesion Model

CM
CB

10% 20% 30%
4% 2.660 2.693 2.712
5% 3.435 3.471 3.354
6% 3.103 3.108 3.081

(c) Four-Peaked Lesion Model
Reconstruction parameters: population size of one with intelligent initializa-
tion, 10 generations, 100% intelligent nudge operator, 3 × 106-17 × 106

photons. (a-b) used a 16×16×50 voxel grid, while (c) used a 32×32×50
voxel grid. The cuboid volume of (b) was of size 3×3 mm2 in the x-y
dimension with a melanin thickness of 0.3 mm and a blood thickness of 0.1
mm. All models has a true CM=5% and true CB=20%.

by as much as -16% with respect to the surrounding skin,
indicating hypoxia [33]. Thus, parallel efforts are ongoing
to estimate blood oxygen saturation using transillumination
imaging with the Nevoscope as a useful indicator of severity
and early malignancy [17], [27], [28].

As can be seen in Table V, for each lesion model shape,
high reconstruction fitness results when the correct CM is used,
even when CB is incorrect. This makes sense as the melanin
layer is closest to the surface and therefore has a large effect
on the fitness; errors in the deeper blood layer contribute less
to the fitness and so CB is more difficult to detect. However,
fitness is highest for CM=5% and CB=20%, which matches the
parameters used in the true volume. As a result, by running the
reconstruction with different initial assumptions, the correct
parameters can be estimated by selecting the case which results
in simulated images with a superior similarity to the true
images.

VI. VOLUME RECONSTRUCTION RESULTS ON A SKIN
PHANTOM

As an intermediate validation step, the reconstruction algo-
rithm was run on Nevoscope transillumination images acquired
on a skin phantom which was constructed to closely match the
optical properties of human skin [34]. The main objective of
the physical phantom was to validate the Nevoscope depth-
dependent imaging for visualization and analysis of an em-
bedded object in a skin tissue like medium with the capability
of separation of Hb and HbO2 in a mixture within a vascular
structure (capillary tubes were used to represent vascularity
in a very simple way) [17]. Considering that the medium had
melanin spectral characteristics and the tubes could contain
Hb and HbO2, the phantom represented a tissue vascular
structure with blood composition at a specific depth level. The
Nevoscope imaging was evaluated and then used in validating
the Monte Carlo simulation and volume reconstruction.

A 1.15 mm diameter capillary tube was embedded into this
phantom bordering on the surface. The total volume of the tube
within a 7.5×7.5 mm2 imaging FOV was thus 7.79 mm3. The

tube was then filled with a red dye to mimic blood at 100%
HbO2 for which the absorption coefficients at 600, 680, 780,
and 875 nm were measured using a single integrating sphere.
Multispectral images were acquired with the Nevoscope for
the filled tube at these four wavelengths, as well as for an
empty tube to serve as the background. The GA-based recon-
struction procedure was randomly initialized. Since only one
layer (blood) was present in the phantom, the melanin layer
thickness was constrained to zero. The absorption coefficients
of the blood layer in simulation, µBL

a (λ), were modified to be
the measured absorption coefficients of the red dye.

Reconstruction was performed within a 32×32×50 voxel
grid. The GA used a population of 100 chromosomes, with
5000 generations, 3 × 106-12 × 106 photons, a 80%-20%
crossover rate, 10%-40% mutation rate, 10%-40% nudge rate,
CB=100%, `ML

max = 0, and `BL
max = 15. Upon completion

of the reconstruction algorithm, the blood layer volume was
found to be 7.02 mm3, which matches the true tube volume
with an error of 9.92%. The good reconstruction results of a
single layer using images acquired with the Nevoscope give
good confidence in the accuracy of the GA reconstruction
on real-world images. While this phantom does not have the
exact same two-layer structure of a pigmented melanin layer
over-top of a blood layer as has been discussed previously,
the two-layer structure was extensively simulated with the
Monte Carlo simulation and GA-based reconstruction after the
depth-dependent Nevoscope imaging was validated with the
physical phantom. The phantom-based validated mathematical
Monte Carlo simulation of a two-layer lesion for quantitative
evaluation of GA-based reconstruction serves the purpose of
performance evaluation and assessment of error analysis.

VII. VOLUME RECONSTRUCTION RESULTS ON REAL SKIN
LESIONS

Based on the excellent simulation results for volume re-
construction, a set of 14 images of real skin lesions were
obtained using the Nevoscope at a dermatology clinic. All
lesions were pigmented melanocytic nevi found on light
skin. Patients gave informed consent and were kept seated
at rest prior to imaging. The skin lesions were inspected
and classified visually by an expert dermatologist into mild,
moderate, or severe categories. Multispectral transillumination
images of each lesion were obtained at 600, 680, 780, and
875 nm. Images of the patient’s background skin were also
obtained for each wavelength to correct the lesion images
for the background skin color, baseline blood perfusion, and
illumination profile. These background images were taken in
an area with no lesions present, typically immediately adjacent
to the lesion in question.

Reconstruction was performed within a 32×32×50 voxel
grid. The GA used a population of 100 chromosomes, with
5000 generations, 3 × 106-12 × 106 photons, a 70%-30%
crossover rate, 10%-20% mutation rate, 10%-20% nudge rate,
10%-30% intelligent nudge rate, [SO2]=75%, `ML

max = 6, and
`BL

max = 2. A small GA (population size of one, 10 generations,
100% intelligent nudge rate, and 3×106-17×106 photons) was
used to estimate CM (between 4% and 7%) and CB (between



9

10% and 30%) based on the highest final chromosome fitness.
Upon completion, a number of features were extracted from
the resulting best volume estimate:

1) Lesion area, A.
2) Volume of the melanin and blood layers, VML and VBL.
3) Volume of the total amount of melanin and blood, VM

and VB, defined as VM = CMVML and VB = CBVBL.
4) Average melanin and blood thickness, computed as

VML/A and VBL/A.
5) Maximum melanin and blood depth.
6) Blood volume to total volume fraction, R, representing

the volume of total blood recovered compared to the
total volume of both melanin and blood, and defined as
R = VB/(VM + VB).

Six lesions were classified as mild by the expert dermatologist,
seven were classified as moderate, and one was classified as
severe. As a result, the severe lesion was grouped together
with the moderate lesions for subsequent analysis.

To assess the statistical significance of each of these volume
features to differentiate between the mild class and the moder-
ate/severe class, the non-parametric one-tailed Mann-Whitney
U test was performed on each feature. The only features
which were significant at the 5% significance level were the
blood layer volume VBL (p=0.0007), the total blood volume
VB (p=0.0007), the average blood thickness (p=0.001), and the
highly significant blood volume fraction R (p=0.0003). All of
the other features, including the total melanin volume, average
melanin thickness, and maximum depths, were not significant
(p ≥0.14). This suits the knowledge that depth by itself is not
an indicator of lesion severity, since, for example, compound
nevi can extend into the dermis but the vast majority are
benign. Rather, it is the blood volume relative to the melanin
volume which appears to be important. Despite this, it may be
possible in the future to track changes to certain features over
time, such as average or maximum melanin depth, to detect
growth of malignant lesions early on.

Fig. 5 displays a scatter plot of average blood thickness
versus the blood volume to total volume fraction R, marked
with respect to class. It is clear from this figure that the
mild and moderate/severe classes nicely separate into distinct
clusters, with a very good potential for classification. While the
severe lesion resulted in relatively large values for the average
blood layer thickness and blood volume fraction, a bigger data
set would be required to assess the class differences between
moderate and severe with more confidence.

For a robust analysis of how well these volume features
can classify the lesions into the two classes, and because the
number of lesions was relatively small, a k-nearest-neighbor
(kNN) classification was performed using the two most signif-
icant features: the blood volume fraction R, and the average
blood thickness. For the clinical lesions, a choice of k = 1
was made. The test and training sets for the classifier were
generated using 3-fold cross-validation.

The 3-fold cross-validated nearest neighbor classifier re-
turned a 100% test classification accuracy for the mild and
moderate/severe classes, confirming the ability of the volume
features to predict lesion severity, even when the data is split
into training and testing subsets. Thus, the reconstructed blood
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Fig. 5. Clinical lesion reconstruction features.

volume features demonstrate a good potential to differentiate
the various levels of lesion dysplasia and severity, with an
accuracy of 100% for the 14 lesions imaged.

VIII. CONCLUSION

The methods presented successfully demonstrate use of
features derived from volumetric reconstruction and chro-
mophore quantification for the analysis and classification of
pre-malignant lesions using multispectral imaging in a clinical
setting. While further validation will need to be performed
over a larger set of images, these preliminary clinical results
show a promising ability to differentiate classes of lesion
severity based on multispectral transillumination Nevoscope
imaging with the inverse volume reconstruction algorithm.
This ability could lead to fast screening, tracking, and de-
tection of early skin cancers such as melanoma.
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